
Facilitating The Internet Of Things With 
Policy Programming

Supplementing the works presented in:

"Integrated development environment for debugging policy-based 
applications in wireless sensor networks“

…and lessons learned since. 

Daniel Smullen

Nidal Qwasmi

Ramiro Liscano



Main Research and Development 
Products

• Policy IDE

• Real-time debugging of policy programming

• GUI

• TOSServ

• Centralized TOSSIM Service

• Finger2IPv6

• Policy programming could now occur on real wireless sensor 
devices, using IPv6

Code available on GitHub (2 dev. branches):

github.com/drspangle/tinyos-main/tree/Finger2IPv6

github.com/drspangle/tinyos-main/tree/TOSServ



• Real-time debugging of policy programming using packet injection became 
possible.

• Main thrust of paper.

• Debug messages collected from TOSSIM, displayed on GUI in real time.

Policy IDE



Policy IDE

• Viewing these messages and manipulating policies on 
simulated devices allowed introspection into the results 
of policies. 

• Policy programming was conducted using emulated 
sensor motes running the Finger2 policy engine core (by 
Themistoklis Bourdenas).



What’s the point of policy 
programming?

• If, then – logical inferences:

• Something like a rule-based system.

• Classically useful for network security:

• Firewalls.

• IDS.

• Special niche in the tinyOS world.



Our special niche in tinyOS…

• Allows for extensible control logic.

• tinyOS is all about creating components:

• Pseudo-objects with events and actions.

• … but if you want to change anything except a variable, 
you have to re-flash the entire binary onto the device.

• Policy programming lets you tie it all together.

• Not as useful for very simple if conditions.

• Great for chains of inference.

• Great for making software robust to changing circumstances.



Leveraging the Event Driven System

• Policy programming is an application development 
platform that lets you sandwich together the best of two 
worlds:

• Event driven architecture of tinyOS.

• ‘Dumb’ functions.



Why a Policy IDE became a logical 
necessity…

• Policy programming is essentially an informal 
programming language.

• Policies quickly become complicated

• Chains of inference can get long, fast.

• Debugging and testing…

• Facilities for triggering events, so actions can be evaluated.

• Facilities for viewing the output in an easy way.

• Rejoice - No more manual memory introspection!



Making Policy-Based Applications

Key design principles:

• Reprogramming over the air can be avoided by 
introducing new policies, and/or updating old ones.

• Policies can be chained to one another, providing a robust 
event-driven rule-based architecture for larger system 
designs.

• Policies can be used in conjunction with highly optimized 
low-level nesC code units as extensible control logic.



Building 6LoWPAN Network

One or several 802.11x to 6LoWPAN edge 
routers provide local Ethernet and WIFI 
devices a connection to the facilities of 

the distributed security system.

Sensor motes would capture sensor 
data from access control mechanisms 

such as doors or motion detectors, and 
also provide the control mechanism 

for access authorization.

Edge router motes could be dedicated to 
handling communication with external 

networks including alarm systems, 
automated telephone dialers, or Internet 

routers.

Any multitude of devices could be 
interconnected with the distributed 
security/access control system, 
changing policies or simply 
providing a means of access control 
depending on what device type it 
is. This can include traditional 
security devices, and any number 
of new ones that are interoperable 
via ordinary computer networks.

Biometric 
Devices ‘Smart’ 

Building 
Sensors

Mobile Phones and 
other Human-Centric 

Devices

Servers

Power and 
Data 

Infrastructure

Laptop/Desktop PCs

The building itself would have its own 6LoWPAN network. IPv6 
ensures that a virtually unlimited number of devices could be used 
within each structure, with ‘global’ addresses at key edge routers.



TOSServ

• Allows TOSSIM to sit in its own environment, happy with 
it’s old version of gcc 3 and peculiar build chain.

• Distributed from the Policy IDE client using xml-rpc 
(Python).

• Needs further development.



TOSServ



Transitioning to IPv6

The basic picture laid out…



Finger2IPv6

• Binding the Finger2 policy engine core with blip (Berkeley 
Low-Power Internet Stack).

• Finger2 was previously bound to AMPacket, to work with 
TOSSIM.

• TOSSIM doesn’t support blip (due to low-level code 
optimizations, very convenient but quirky tinyOS API 
hacks).



Finger2IPv6

• Now we can do what Policy IDE does from the command 
line.

• Command-line interpreter similar to Python, except for Policy 
Programming.

• Load, delete, enable, disable, and test policies.

• Next steps:

• GUI integration.

• A new language? Policy Definition Language.

• Self-discovery and network policy discovery.


