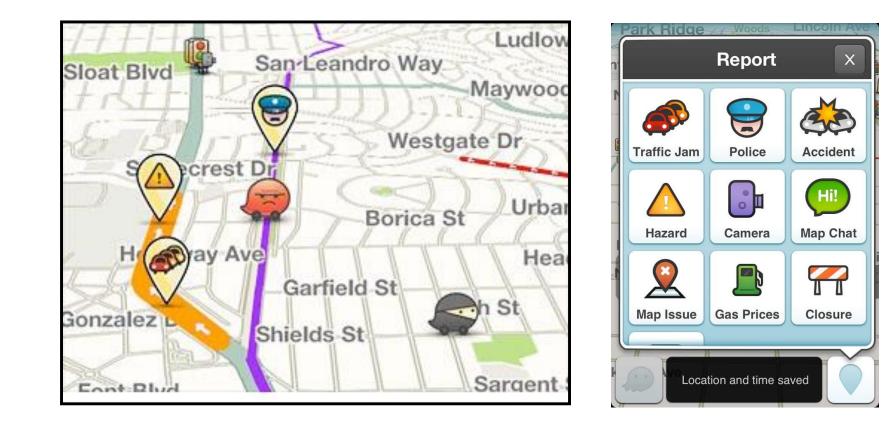
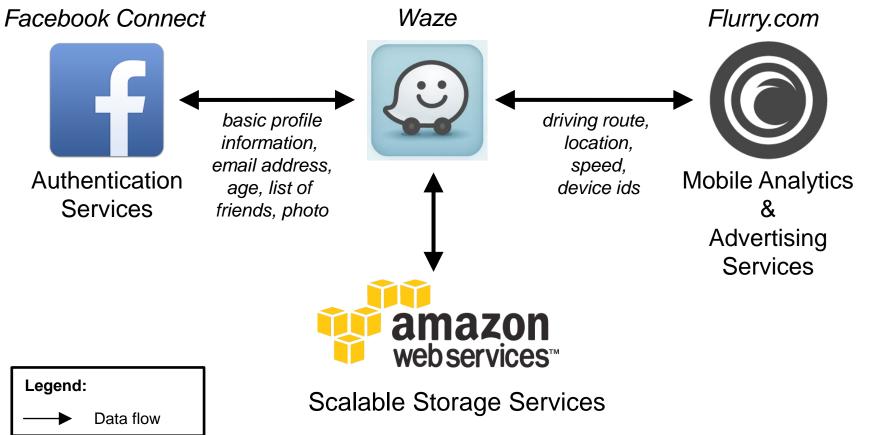
Carnegie Mellon

IST institute for SOFTWARE RESEARCH **Detecting Repurposing and Over-collection in Multi-Party Privacy Requirements Specifications**


Travis D. Breaux, Daniel Smullen, Hanan Hibshi {breaux,dsmullen,hhibshi}@cs.cmu.edu

Motivation

- Mobile and web applications are using Service Oriented Architectures more and more.
- How do we ensure that using 3rd party services doesn't increase our privacy risk?
 - What sort of data do they want?
 - What will they do with my data once they have it?
 - What am I willing to give them?
- Tough to answer these questions.



Example Service Integration

Case Study Research Questions

RQ1: What conflicts exist in our formalization of Waze's policies?

RQ2: What multi-party data flows exist?

RQ3: Does data repurposing or over collection occur?

Building on Previous Work

- [BR13] introduced Eddy.
- SQL-like syntax for policy specifications.
- Limited to tracing policies within a system; can't extend to 3rd parties.
- Great for finding conflicts in policies (conflicting interpretations).
- Some performance analysis.

[BR13] T.D. Breaux, A. Rao. "Formal Analysis of Privacy Requirements Specifications for Multi-Tier Applications, *21st IEEE International Requirements Engineering Conference*, pp. 14-23, Jul. 2013

Related Work

- Extracting goals from privacy policies [Antón et al.,2004; Breaux & Antón, 2005; Young et al., 2011]
- Formal models of privacy-related requirements [Breaux, Hibshi, Rao, 2013; Liu et al. 2003; Tun et al. 2012; Omoronyia et al., 2013]
- Static and dynamic analysis of code (TaintDroid, Appfence, Pscout)

[Enck et al., 2010; Hornyack et al. 2011; Yee Au et al. 2012]

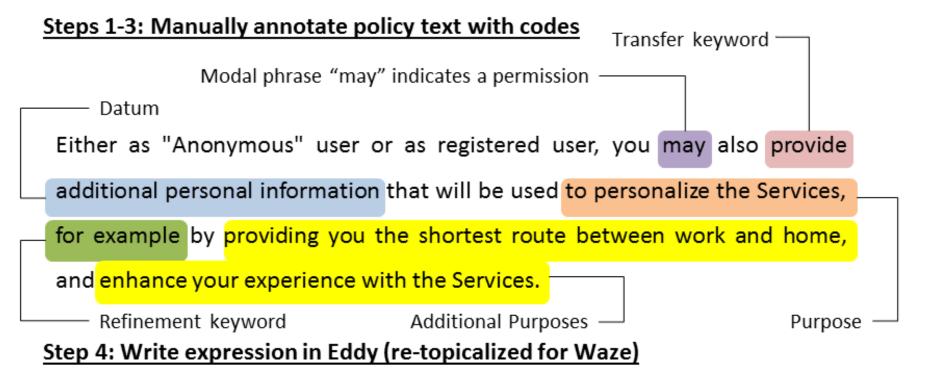
• Multiple policy-related languages...

Carnegie Mellon University The Value of Knowing

Maximize Data Utility

- Collect everything, value is realized later
- Ensure open access; this drives innovation
- Disclose to leverage third-party value
- Retain as long as practical (longitudinal/behavioral)
- Avoid destruction

Balancing Utility and Risk


Maximize Data Utility

- Collect everything, value is realized later
- Ensure open access; this drives innovation
- Disclose to leverage third-party value
- Retain as long as practical (longitudinal/behavioral)
- Avoid destruction

Minimize Privacy Risk

- Limit collection based on stated needs
- Limit access, obtain consent for new uses
- Limit disclosure and third-party uses
- Destroy when no longer needed
- Embrace destruction

SPEC-HEADER

P personalizing-services > providing-shortest-route, enhancing-service-experience SPEC-POLICY

P COLLECT personal-information FROM waze-user FOR personalizing-services

Step 5: Tool compiles Eddy into Description Logic

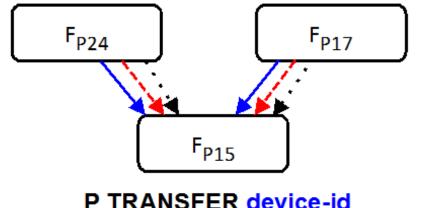
- (A) providing-shortest-route ⊑ personalizing-services
- (B) enhancing-service-experience ⊑ personalizing-services
- (C) $p_6 \equiv COLLECT \sqcap \exists hasObject.personal-information \sqcap$

∃hasSource.waze-user ⊓ ∃hasPurpose.personalizing-services

(D) $p_6 \sqsubseteq$ Permission

Three Privacy Principles

- *Purpose specification principle:*
 - The purposes for which data is collected should be explicitly stated.
- Collection limitation principle:
 - Collection of personal data should be limited (to what will be used).
- Use limitation principle:
 - Uses should be limited to the purposes for which the data was originally collected, and nothing else.
- Exceptions for consent and legal compliance.


Three Privacy Principles

- Commonly accepted.
 - U.S. Fair Information Practice Principles (FIPPs)
 - OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal Data
- If these principles are violated, there are privacy risks.
 - Repurposing
 - Overcollection

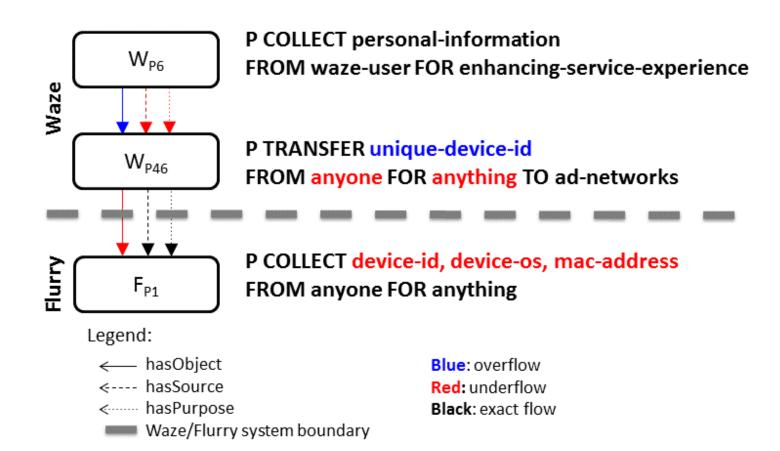
Crossflow Analysis (1st Party), Identifying Data Over- and Under-flows

P COLLECT device-id, ip-address, P.COLLECT device-id, location, ... FROM end-user FOR anything FROM application FOR anything

FROM anyone FOR anything

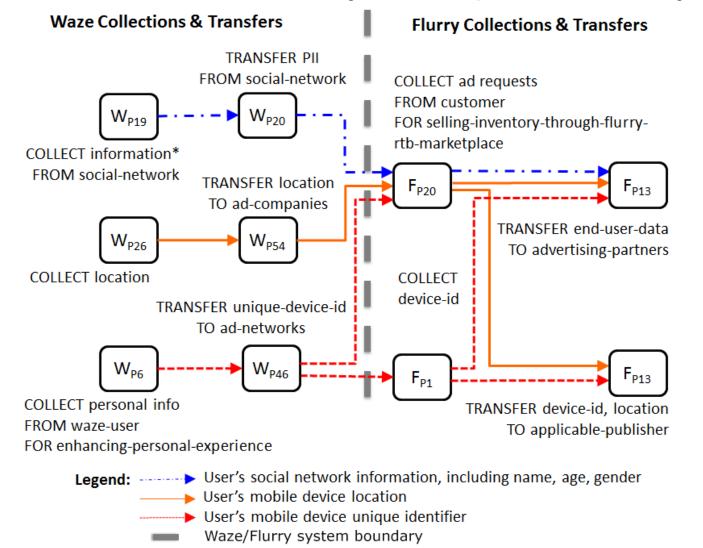
Legend:

hasObject
hasSource
hasPurpose
Blue: overflow
Red: underflow
Black: exact flow


institute for SOFTWARE RESEARCH

Tracing to 3rd Parties

- Requires a dictionary, to map each party's lexicon.
- Your definition of information is different to mine.
- Your definition of a purpose is different to mine.
- And so on...
- Dictionaries can be developed separately by different parties.



Crossflow Analysis (3rd Party)

Crossflow Analysis (3rd Party)

Waze Case Study Results

Policy	Total Stmts	Data Req'ts	Modality ¹			Actions ²		
			Р	0	R	С	U	Т
Waze	150	65	60	0	5	13	18	34
Flurry	155	44	42	0	2	15	6	23
Facebook	136	55	24	1	30	13	24	18

Overview of Requirements

- Privacy policies generally describe permissions (P), with few prohibitions (R) and almost no obligations (O)
- 2. Data requirements describe only collect (C), use (U) and transfer (T) actions, which comprised 28-43% of total policy

Patterns: (Purpose Hoisting, Unrestricted Cross-Flows)

Waze Case Study Results

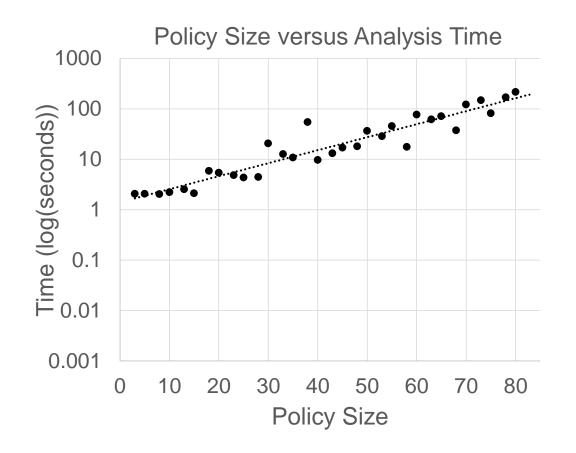
Policy	Definitions		Axioms			Concepts		
	Expl.	Impl.	S	D	E	А	D	Р
Waze	19	29	41	3	4	6	29	13
Flurry	14	20	21	1	12	0	34	0
Facebook	13	0	11	0	2	0	13	0

Ontology Complexity

- Inferences to discover implied (Impl.) definitions (e.g., personal information is equivalent to personal details).
- Formalisms: Subsumption (S), Disjointness (D) and Equivalence axioms (E).
- Concepts: Actors (A), Data types (D) and Purposes (P)

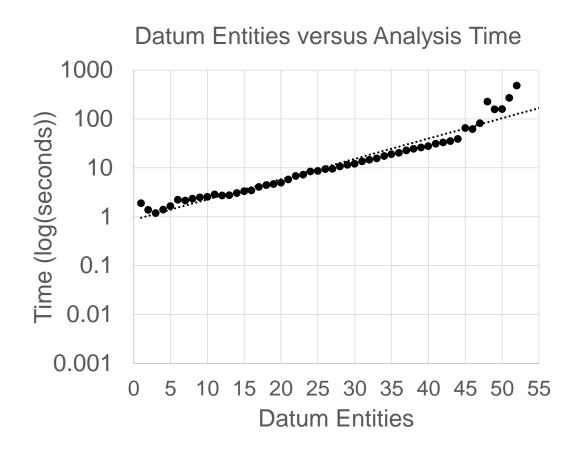
Waze Case Study Results

- Found conflicts envision tool-driven techniques to help specification authors to detect and remove these.
- Discovered attacks on collection and use limitation principles (unrestricted crossflows, purpose hoisting)
- Scaling tools to larger policies (akin to map-reduce).
- Expand to other data practices: consent, data retention, etc.



Quick note on performance analysis...

- Most policies have around 50 data requirements.
- Gets bigger when you introduce multiple parties.
- So, how big can we make them before the Eddy toolchain blows up?
 - AKA Does it scale?


Does it Scale?

- Logarithmic plot.
- How long does it take to do analysis as the number of requirements grows?
- 80: Under 4 minutes.

Does it Scale?

- New benchmark.
- Logarithmic plot.
- How long does it take to do analysis as the number of data types grow?
- Policy size: fixed, 400.
- 52: Under 8 minutes.

Conclusions

- Eddy works equally well with multi-party compositions.
- Toolchain scales well to extremely large policies.
- Using two coders and the toolchain, we can analyze a complex compositional system.
- Validate conformance to the 3 privacy principles.
- Two interesting privacy design patterns were found.

